Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method

نویسندگان

  • Guannan Chen
  • Meizhu Chen
  • Jichun Li
  • Encai Zhang
چکیده

As a nonintrusive method, the retina imaging provides us with a better way for the diagnosis of ophthalmologic diseases. Extracting the vessel profile automatically from the retina image is an important step in analyzing retina images. A novel hybrid active contour model is proposed to segment the fundus image automatically in this paper. It combines the signed pressure force function introduced by the Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) model with the local intensity property introduced by the Local Binary fitting (LBF) model to overcome the difficulty of the low contrast in segmentation process. It is more robust to the initial condition than the traditional methods and is easily implemented compared to the supervised vessel extraction methods. Proposed segmentation method was evaluated on two public datasets, DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structured Analysis of the Retina) (the average accuracy of 0.9390 with 0.7358 sensitivity and 0.9680 specificity on DRIVE datasets and average accuracy of 0.9409 with 0.7449 sensitivity and 0.9690 specificity on STARE datasets). The experimental results show that our method is effective and our method is also robust to some kinds of pathology images compared with the traditional level set methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D vasculature segmentation using localized hybrid level-set method

BACKGROUND Intensity inhomogeneity occurs in many medical images, especially in vessel images. Overcoming the difficulty due to image inhomogeneity is crucial for the segmentation of vessel image. METHODS This paper proposes a localized hybrid level-set method for the segmentation of 3D vessel image. The proposed method integrates both local region information and boundary information for ves...

متن کامل

Retinal Blood Vessel Region Exploration by Hybrid Method Segmentation

Accurate segmentation and evaluation of the anatomical and pathological features of retinal vessels are critical for the diagnosis and study of many ocular diseases. These include retinopathy of prematurity (ROP). ROP is a disorder of the retinal blood vessels that is a major cause of vision loss in premature neonates. It is proposed a methodology for extracting the vascular network in the huma...

متن کامل

A Hybrid Method for Segmentation and Visualization of Teeth in Multi-Slice CT scan Images

Introduction: Various computer assisted medical procedures such as dental implant, orthodontic planning, face, jaw and cosmetic surgeries require automatic quantification and volumetric visualization of teeth. In this regard, segmentation is a major step. Material and Methods: In this paper, inspired by our previous experiences and considering the anatomical knowledge of teeth and jaws, we prop...

متن کامل

Blood Vessel Segmentation in Retinal Fundus Images

The segmentation of retinal blood vessels in the retina is a critical step in diagnosis of diabetic retinopathy. In this paper, we present a new method for automatically segmenting blood vessels in retinal images. Five basic algorithms for segmenting retinal blood vessels, based on different image processing techniques, are described and their strengths and weaknesses are compared. A hybrid alg...

متن کامل

Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017